Построение логического отрицания правило

Логические операции и их свойства

Построение логического отрицания правило

Конъюнкция является сложным логическим выражением, которое истинно в том и только том случае, когда оба простых выражения являются истинными. Такая ситуация возможно лишь в единственном случае, во всех остальных случаях конъюнкция ложна.

Обозначение: &, $\wedge$, $\cdot$.

Таблица истинности для конъюнкции

Рисунок 1.

Свойства конъюнкции:

  1. Если хотя бы одно из подвыражений конъюнкции ложно на некотором наборе значений переменных, то и вся конъюнкция будет ложной для этого набора значений.
  2. Если все выражения конъюнкции истинны на некотором наборе значений переменных, то и вся конъюнкция тоже будет истинна.
  3. Значение всей конъюнкции сложного выражения не зависит от порядка записи подвыражений, к которым она применяется (как в математике умножение).

Дизъюнкция или логическое сложение (в теории множеств это объединение)

Дизъюнкция является сложным логическим выражением, которое истинно практически всегда, за исключением, когда все выражения ложны.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Обозначение: +, $\vee$.

Таблица истинности для дизъюнкции

Рисунок 2.

Свойства дизъюнкции:

  1. Если хотя бы одно из подвыражений дизъюнкции истинно на некотором наборе значений переменных, то и вся дизъюнкция принимает истинное значение для данного набора подвыражений.
  2. Если все выражения из некоторого списка дизъюнкции ложны на некотором наборе значений переменных, то и вся дизъюнкция этих выражений тоже ложна.
  3. Значение всей дизъюнкции не зависит от порядка записи подвыражений (как в математике – сложение).

Отрицание, логическое отрицание или инверсия (в теории множеств это отрицание)

Отрицание – означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО и в итоге получаем, что если исходное выражение истинно, то отрицание исходного – будет ложно и наоборот, если исходное выражение ложно, то его отрицание будет истинно.

Обозначения: не $A$, $\bar{A}$, $¬A$.

Таблица истинности для инверсии

Рисунок 3.

Свойства отрицания:

«Двойное отрицание» $¬¬A$ является следствием суждения $A$, то есть имеет место тавтология в формальной логике и равно самому значению в булевой логике.

Импликация или логическое следование

Импликация – это сложное логическое выражение, которое истинно во всех случаях, кроме как из истины следует ложь. То есть, данная логическая операция связывает два простых логических выражения, из которых первое является условием ($A$), а второе ($A$) является следствием условия ($A$).

Обозначения: $\to$, $\Rightarrow$.

Таблица истинности для импликации

Рисунок 4.

Свойства импликации:

  1. $A \to B = ¬A \vee B$.
  2. Импликация $A \to B$ ложна, если $A=1$ и $B=0$.
  3. Если $A=0$, то импликация $A \to B$ истинна при любом значении $B$, (из лжи может следовать истинна).

Эквивалентность или логическая равнозначность

Эквивалентность – это сложное логическое выражение, которое истинно на равных значениях переменных $A$ и $B$.

Обозначения: $\leftrightarrow$, $\Leftrightarrow$, $\equiv$.

Таблица истинности для эквивалентности

Рисунок 5.

Свойства эквивалентности:

  1. Эквивалентность истинна на равных наборах значений переменных $A$ и $B$.
  2. КНФ $A \equiv B = (\bar{A} \vee B) \cdot (A \cdot \bar{B})$
  3. ДНФ $A \equiv B = \bar{A} \cdot \bar{B} \vee A \cdot B$

Строгая дизъюнкция или сложение по модулю 2 ( в теории множеств это объединение двух множеств без их пересечения)

Строгая дизъюнкция истинна, если значения аргументов не равны.

Для функции трёх и более переменных результат выполнения операции будет истинным только тогда, когда количество аргументов равных $1$, составляющих текущий набор — нечетное. Такая операция естественным образом возникает в кольце вычетов по модулю 2, откуда и происходит название операции.

Обозначения: $A \oplus B$ (в языках программирования), $A≠B$, $A \wedge B$ (в языках программирования).

Таблица истинности для операции сложения по модулю два

Рисунок 6.

Свойства строгой дизъюнкции:

  • $a \oplus 0 = a$(идемпотентность)
  • $a \oplus 1 = \bar{a}$(отрицание)
  • $a \oplus a = 0$(получение 0)
  • $a \oplus b = b \oplus a$(коммутативность)
  • $(a \oplus b) \oplus c = a \oplus (b \oplus c)$(ассоциативность)
  • $(a \oplus b) \oplus b = a$(поглощение)
  • $\bar{a} \oplus b = a \oplus \bar{b} = (a \equiv b)$(сравнения по модулю)

Стрелка Пирса

Бинарная логическая операция, булева функция над двумя переменными. Названа в честь Чарльза Пирса и введена в алгебру логики в $1880—1881$ гг.

Обозначения: $\downarrow$ , ИЛИ-НЕ

Таблица истинности для стрелки Пирса

Рисунок 7.

Свойства:

Стрелка Пирса, как и конъюнкция, дизъюнкция, отрицание, образует базис для булевых функций двух переменных. При помощи стрелки Пирса, можно построить все остальные логические операции, например:

$X \downarrow X = ¬X$— отрицание

$(X \downarrow Y) \downarrow (X \downarrow Y) \equiv X \vee Y$ — дизъюнкция

$(X \downarrow X) \downarrow (Y \downarrow Y) \equiv X \wedge Y$ — конъюнкция

$((X \downarrow X) \downarrow Y) \downarrow ((X \downarrow X) \downarrow Y) = X \to Y$ — импликация

В электронике стрелка Пирса представлена в виде элемента, который носит название «операция 2ИЛИ-НЕ» (2-in NОR).

Штрих Шеффера

Булева функция двух переменных или бинарная логическая операция. Введена в рассмотрение Генри Шеффером в 1913 г.

Обозначения: $|$, эквивалентно операции И-НЕ.

Таблицей истинности для функции штрих Шеффера

Рисунок 8.

Свойства:

Штрих Шеффера образует базис для всех булевых функций двух переменных. Применяя штрих Шеффера можно построить остальные операции, например,

$X \mid X = ¬X$ — отрицание

$(X \mid Y) \mid (X \mid Y) = (X \wedge Y)$ — конъюнкция

$(X \mid X) \mid (Y \mid Y) = X \vee Y$ — дизъюнкция

$X \mid ¬X$ — константа 1

Для электроники это означает, что реализация схем возможна с использованием одного типового элемента (правда это дорогостоящий элемент).

Порядок выполнения логических операций в сложном логическом выражении

  1. Инверсия(отрицание);
  2. Конъюнкция (логическое умножение);
  3. Дизъюнкция и строгая дизъюнкция (логическое сложение);
  4. Импликация (следствие);
  5. Эквивалентность (тождество).

Для того чтобы изменить указанный порядок выполнения логических операций, необходимо использовать скобки.

Общие свойства

Для набора из $n$ логических переменных существует ровно $2n$ различных значений. Таблица истинности для логического выражения от $n$ переменных содержит $n+1$ столбец и $2n$ строк.

Источник: https://spravochnick.ru/informatika/algebra_logiki_logika_kak_nauka/logicheskie_operacii_i_ih_svoystva/

§ 3. Логика высказываний — Информатика. 7 класс

Построение логического отрицания правило
sh: 1: –format=html: not found

Возможности компьютера велики. Он может помочь врачу поставить правильный диагноз пациенту, пассажиру — выбрать билет на нужный поезд; компьютер может управлять автомобилем, составлять прогнозы погоды и многое другое.

Для того чтобы выяснить, может ли компьютер «думать», сначала нужно понять, как думает человек. Ведь именно человек создал компьютер, и компьютер выполняет только те действия, которым его научил человек.

Наши знания об окружающем мире мы выражаем в повествовательных предложениях. Такие предложения могут отражать действительность верно или неверно. Думая, человек строит свои рассуждения, основываясь на собственных знаниях.

Еще Аристотель заметил, что правильность рассуждений не зависит от содержания, а определяется формой.

На правилах математической логики построены процессы «рассуждений» компьютера. Изучение логики высказываний поможет понять, как можно научить компьютер «думать».

3.1. Понятие высказывания

Высказывание — повествовательное предложение (утверждение), о котором в настоящее время можно сказать, истинно оно или ложно (пример 3.1).

Об истинности высказывания можно говорить только в настоящем времени: высказывание «Идет дождь» может быть истинным сейчас и ложным через час.

Как правило, высказывания обозначают заглавными латинскими буквами. Если высказывание А истинно, пишут А = 1, если ложно — А = 0 (пример 3.2). Часто используют такие обозначения: А = true (истина) и А = false (ложь).

Пример 3.1. Следующие предложения являются высказываниями:

  1. Атом водорода самый легкий (истинно).
  2. Клетка — часть атома (ложно).
  3. Кирилл Туровский — известный английский писатель и оратор (ложно).
  4. При делении любого числа (кроме нуля) на само себя получается число 1 (истинно).

Пример 3.2.

А = «а0 равно 1»;

В = «Масса измеряется в литрах».

Для приведенного примера А = 1, В = 0.

3.2. Логическая операция НЕ

С высказываниями можно производить различные операции, подобно тому как в математике — с числами (сложение, умножение, вычитание и др.).

Логическая операция НЕ (отрицание) меняет значение высказывания на противоположное: истинно на ложно, а ложно на истинно.

Логическое отрицание получается из высказывания путем добавления частицы «не» к сказуемому или с использованием оборота «неверно, что…» (пример 3.3). Иногда при построении отрицаний некоторые слова заменяют их антонимами, если это возможно.

Если высказывание содержит слова «все», «всякий», «любой», то отрицание такого высказывания строится с использованием слов «некоторые», «хотя бы один». И наоборот, для высказываний со словами «некоторые», «хотя бы один» отрицание будет содержать слова «все», «всякий», «любой» (пример 3.4).

Любую операцию над числами в математике обозначают каким-либо знаком: «+», «–», «·», «:». Для логических операций тоже определены свои обозначения. Если операцию отрицания применяют к высказыванию А, то это можно записать так: НЕ А. Можно встретить и другие обозначения для логической операции отрицания: Not A,¬A, Ā, ~A.

Если нас интересует истинность высказывания НЕА, то ее (вне зависимости от содержания) можно определить по таблице истинности:

Из таблицы истинности следует, что отрицанием истинного высказывания будет ложное, а отрицанием ложного — истинное (пример 3.5). Высказывание и его отрицание никогда не могут быть истинными или ложными одновременно.

Отрицанием высказывания «У меня есть компьютер» будет высказывание «У меня нет компьютера» (или высказывание «Неверно, что у меня есть компьютер»). Истинность этих высказываний зависит от конкретного человека. Для одних будет истинным первое высказывание, а для других — второе. Но оба высказывания не могут быть истинными или ложными одновременно для одного и того же человека.

  1. 1 Определите, какие из предложений являются высказываниями, а какие нет.
    1. Включи монитор.
    2. Кислород — это газ.
    3. Шишка — это цветок.
    4. Сколько воды утекло?
    5. Все дети — учащиеся.
    6. Хотя бы один пароль будет верным.
  2. 2 Определите истинность высказываний.
    1. 123 — это цифра.
    2. Стол — это существительное.
    3. Число 46 является степенью 2.
    4. равно 0,75.
    5. Железо легче воды.
  3. 3 Постройте отрицания высказываний.
    1. Миша не может пойти в кино.
    2. Соня любит рисовать.
    3. Все планеты не имеют атмосферы.
    4. В сентябре не бывает дождей.
    5. Солнце светит ярко.
    6. Некоторые птицы улетают на юг.
  4. 4 Откройте файл с данными ниже предложениями и отредактируйте их, удалив или вставив частицу «не» так, чтобы все предложения стали истинными высказываниями.
    • Озеро Нарочь не является крупнейшим озером Беларуси.
    • Все горы являются вулканами.
    • Дуб — хвойное дерево.
    • Число 27 является простым числом.
    • Термометр не позволяет определить температуру тела.
    • Число 2016 не делится на 3.
    • Треугольник не является геометрической фигурой.
  5. 5 Какие утверждения о животных, представленных на рисунках, истинные, а какие — ложные?
    • Некоторые из этих животных умеют лазать по деревьям.
    • Все животные обитают в лесах.
    • Ни одно из животных не является домашним.
    • Каждое животное можно погладить.
    • Все люди любят мышей.
    • Ни одно из животных не умеет плавать.
  6. 6 Откройте файл с рисунком трех цветков. Раскрасьте их так, чтобы каждое из следующих высказываний было истинным.
    • Все цветки имеют желтый круг в середине.
    • На рисунке есть цветок с синими лепестками.
    • На рисунке нет цветка с красными лепестками.
    • Неверно, что цвет круга в середине цветка совпадает с цветом лепестков.
    • Хотя бы у одного цветка лепестки разного цвета.
  7. 7 Дополните рисунок из задания 6 изображениями ваз (выберите из файла) так, чтобы каждое из следующих высказываний было ложным.
    1. Все изображения ваз — четырехугольники.
    2. На вазах есть орнамент в виде кругов.
    3. Все круги в орнаменте разного размера.
    4. Хотя бы один круг в орнаменте белого цвета.
  8. 8* Решите задачу-стихотворение.

    Собаки с рыжими хвостами

    Себе овсянку варят сами.

    Тем, чьи хвосты стального цвета,

    Не позволяют делать это.

    Кто варит сам себе овсянку,

    Гулять выходит спозаранку.

    Все, кто гулять выходят рано,

    Не терпят фальши и обмана.

    Вид добродушный у Барбоса,

    Но на сорок он смотрит косо.

    Он видит: норовят сороки

    У воробьев списать уроки!

    Скажите — проще нет вопроса! —

    Какого цвета хвост Барбоса?1

Источник: http://informatika7.adu.by/?page_id=104&lang=ru

В правах
Добавить комментарий